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Variationnal Inference

Given data y, a model p(y,z) with latent variable z, we want to
approximate the distribution p(z|y). Given a variational distribution gy, the
following decomposition can be obtained [3]

p(z,y)
logp(y) = E |log (2 +KL(ar(2)lp(zly). (1)
~ ~~ - KL-divergence
ELBO £(1)
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Using the reparametrization trick [1] with noise parameter X ~ g and
denoting X* = hy(X), the inference problem can be rewritten as finding 1*

such as
A* €argmax[Eq[f(X1)]. (2)
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Optimization Procedure

Given a sample (X,...,Xpy) of size N, typical Monte Carlo Variational
Inference (MCVI) consists of a Gradient descent at each step k

1N A
Am:ak-akNZvAf(Xi . (3)
i=1
[ —

Buc
Gradient descent descent speed crucially depends on the following quantity

Elgl?, =trVg +[Egl?.. 4)

Amir Dib  (ENS Paris-Saclay) Quantized Variational Inference NeurlPS 2020 3/6



Optimization Procedure

Our approach consists of considering alternative sampling instead of the
traditional MC. Precisely, we consider the optimal quantizer [2] at level N,
XTwA resulting in the following gradient descent scheme

N
Ak+1 :Ak—akawf-‘f(Xir"”“) (5)
i=1

with wé‘ = [P’(XF,I(V'A" = xl.k).
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Experiments
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Figure: ELBO (first row, log scale) and expect gradient norm (second row, log
scale) during the optimization procedure for various models: Poisson Generalized
Linear Model (left), Bayesian Linear Regression (center) and Bayesian Neural
Network (right) as function of time.
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