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The life of a train
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Formalism: the feature space

Let (Q2,.A4,P) be a probability space. We introduce the following variables

Event codes. The set of error codes ¥ = {e;,1 < i < d} that can be
emitted:;
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Formalism: the feature space

Let (Q2,.A4,P) be a probability space. We introduce the following variables

Event codes. The set of error codes ¥ = {e;,1 < i < d} that can be
emitted:;

Code Libellé

8025 PD : Def. clos

8425 PG : Def. clos

16111 Def. camera 2

20052 LT Autorisation RD
20053 LT Autorisation em RD
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Formalism: the feature space

Let (Q2,.A4,P) be a probability space. We introduce the following variables

Event codes. The set of error codes ¥ = {e;,1 < i < d} that can be
emitted:;

Feature space. The feature space of event as the set of random covariates
X Q — ¥ x RX with K internal and external real valued time

series;
Code Libellé Time Code X! ... XK
8025 PD : Def. clos t1 e x,_il1 xt’f
8425 PG : Def. clos to €4 x,_Ll2 xt’;
16111 Def. camera 2 t3 e xt13 xt’g
20052 LT Autorisation RD ta s X Xt
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Formalism: the target space

Degradation process. A real valued r.v. Z; : 2 — R representing the
degradation process at eatch time t € R, and z¢ threshold
indicating if the system is considered malfunctioning.
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Formalism: the target space

Degradation process. A real valued r.v. Z; : 2 — R representing the
degradation process at eatch time t € R, and z¢ threshold
indicating if the system is considered malfunctioning.

Target. The binary health status Y; = 17,<,, at each time t € R.
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Formalism

This framework spans a very large class of problem that are very evolving
system with feature variable valued in an unordered set such as

» Graph;
» Sentences;

» DNA sequences.
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Challenges

» Construct a relevant feature space with all the available data is a hard
task;

» The is no straightforward way to process a symbolic time serie data
into a stat model pipeline:

» The output of the prediction pipeline must be interpretable by the
experts;

» The overall computational pipeline must run with reasonable
computational requirements.
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How to process symbolic data ?

There is three common way to treat symbolic data:

Kernel embeddings. (Muandet et al., 2017) Kernel methods rely on a
positive definite kernel function k : X x X — R that induce a
mapping ¢ : X — H in a hilbert pace H.
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There is three common way to treat symbolic data:

Kernel embeddings. (Muandet et al., 2017) Kernel methods rely on a
positive definite kernel function k : X x X — R that induce a
mapping ¢ : X — H in a hilbert pace H.

State machine model (Kamlu and Laxmi, 2019) . Modelizes directly the
degradation process through the computation of transition
matrix between hidden states against observed random states
(see appendix of the thesis manuscript for more details).
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How to process symbolic data ?

There is three common way to treat symbolic data:

Kernel embeddings. (Muandet et al., 2017) Kernel methods rely on a
positive definite kernel function k : X x X — R that induce a
mapping ¢ : X — H in a hilbert pace H.

State machine model (Kamlu and Laxmi, 2019) . Modelizes directly the
degradation process through the computation of transition
matrix between hidden states against observed random states
(see appendix of the thesis manuscript for more details).

Windowing approach. Aggregates signal over parametrized time windows.
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How to process symbolic data ?
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How to process symbolic data ?
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How to process symbolic data ?

Time To Anomaly | 1
) 778
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How to process symbolic data ?

At the end, we obtain a classical ML dataset with numerical quantities

Window G ... Cy4 ... TTA (days)
T 2 ... 10 ... 10
Tz o ... 2 ... 5
T3 1 ... 0 ... 3
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Results: traditional ML approaches for the french train fleet

X Gradient Boosting Random Forest Light Gradient-Boosting Machine | ~ Categorical Boosting Linear Regression k-Nearest Neighbors
[ |07 fwrae) | [ | w7 rel| @] | [1,7,14] W | 07 || [ | 0o | wras | o] po | 7
TGV Doors
AUC 0728 073 0758 | 0.72 0725 0.749 |0.733 0.73 0.756 0634 0.632 0.659 |0.699 0707 0.725 |0.582 0578 0.562
Accuracy | 0.659 0.668 0.692 |0.659 0.674 0.683 | 0.671 0.669 0.692 0597 0.594 0.608 | 0.645 0.653 0.667 | 0.567 0.556  0.55
Recall 0591 059 0.609 |0.608 0.616 0.625 |0.575 0.564 0.597 0611 0.645 0.628 | 0547 0531 0.561 | 0.542 0.552 0.541
F1 0634 0.64 0.664 |0.641 0.654 0.663 |0.636 0.63 0.659 0.602 0.613 0.616 | 0.606 0.605 0.627 | 0.556 0.554 0.546

Table: Test Accuracy, Recall and AUC 5x cross-validated on datasets reported in
the thesis manuscript.
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Interpretability

What about interpretability ?
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Interpretability

What about interpretability ?

We want an output in term of patterns of codes of the form

(e1,e5) — Failure.
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Interpretability

What about interpretability ?
We want an output in term of patterns of codes of the form
(e1,e5) — Failure.

This is the domain of Pattern Mining (Agrawal, Imielinski, and Swami,
1993).
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Figure: Support on each class of patterns extracted by algorithm a priori (Agrawal
and Srikant, 1994) for pn = 1% and u = 4% and patterns of different sizes for the
Doors dataset.Each black point is a pattern of codes with size representing the
length of the pattern. Patterns that are in the upper half of the figure are the
patterns that appears mostly near breakdowns events and pattern that are in the
bottom half of the bisector (red dotted line) are the one appear in period without
breakdowns.
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Pattern mining of events is crucial towards interpretable anomaly detection.
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Pattern mining of events is crucial towards interpretable anomaly detection.

How do we extract them 7
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Background on pattern mining

> Let E = (e1,...,€eq) be any set and consider X = P(E) the collection
of all 29 possible patterns on E.
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Background on pattern mining

> Let E = (e1,...,€eq) be any set and consider X = P(E) the collection
of all 29 possible patterns on E.

» Consider a r.v. X : Q — X distributed according to P and a dataset
(X1, ., Xp) ~ X.

(111)
| \ Sequence Events
T]_ {61762}
(11 oy O 7 ey
X AL 1 e
(100) (010) (001) T4 {e1, e}
| Ts {e2, e3}
(000)
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., €4) be any set and consider X = P(E) the collection

» Consider a r.v. X : Q — X distributed according to P and a dataset

(X4, ..

LX) ~ X

» Let's compute the support

(ENS Paris-Saclay)
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Background on pattern mining

> Let E = (e1,...,€q) be any set and consider X = P(E) the collection
of all 29 possible patterns on E.

» Consider a r.v. X : Q — X distributed according to P and a dataset
(X1, ..., Xn) ~ X.

» Let Ay ={z € X :z D t} the set of all itemsets greater than t € X,
ft(.) = 1.ca, and the associated func family F = {f; : t € X}. The
support of any pattern t is given by s(t) = E[lxca,] = Pf:.



Background on pattern mining

> Let E = (e1,...,€q) be any set and consider X = P(E) the collection
of all 29 possible patterns on E.

» Consider a r.v. X : Q — X distributed according to P and a dataset
(X1, ..., Xn) ~ X.

» Let Ay ={z € X :z D t} the set of all itemsets greater than t € X,
ft(.) = 1.ca, and the associated func family F = {f; : t € X}. The
support of any pattern t is given by s(t) = E[lxca,] = Pf:.

Example

5(61) =K [Alog]
= Pfioo
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Motivations

The problem can now be stated as follow

Problem statement

Let E = (e1,...,eq) be any set and X' = P(E) be the set of patterns on
E. Consider data generated by a r.v. X : Q — X distributed according to
P. For any x € X', compute

_ P(x]Y =0)

e (1)

v
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Motivations

The problem can now be stated as follow

Problem statement

Let E = (e1,...,eq) be any set and X' = P(E) be the set of patterns on
E. Consider data generated by a r.v. X : Q — X distributed according to
P. For any x € X', compute

_ P(x]Y =0)

e (1)

v

To compute it, we can

» Discriminative pattern mining using a generative model for each
subclass (Dib et al., 2021)

» Take a subsample of the dataset and bound the expect support with
classical machine learning tools (Cousins* and Dib*, 2021).
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Recall that the support of a pattern is given by Pf; and the empirical
support is denoted P,f;. The problem can be reformulated as bounding the
supremum deviation of an empirical process.

Problématique

Let X be a set and F = {f; : t € X'} a functional class indexed on X" and
an € € [0,1]. With probability 1 — 4, we require that

SnF = sup |P,fy — Pf;

tex

<e (2)
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Recall that the support of a pattern is given by Pf; and the empirical
support is denoted P,f;. The problem can be reformulated as bounding the
supremum deviation of an empirical process.

Problématique

Let X be a set and F = {f; : t € X'} a functional class indexed on X" and
an € € [0,1]. With probability 1 — 4, we require that

SnF = sup |P,fy — Pf;

tex

<e (2)

Several contributions have been made recently to the topic of probabilistic
bound for pattern mining using various methods of the toolbox of
statistical learning theory such as using Massart’s lemma (Riondato and
Upfal, 2015a), VC dimension (Riondato and Upfal, 2015b) or Monte Carlo
(Global) Rademacher averages (Pellegrina et al., 2020).
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Background on rademacher complexity based bounds: the

global rademacher complexity

Left F be any real-valued functional space, (Xi,...,X,) an sample of size
n drawn from the underlying and unknown distribution P and (o1,...,04)
a set of rademacher variables.

1 n

Ra(F,x) =1 E| sup - Zcr;f(x;) ] (Empirical Rad. average)
7| fer | N
1 n

R.(F)=E [E sup | Z oif(x;) ” (Rademacher average)
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Background on rademacher complexity based bounds: the

global rademacher complexity

Left F be any real-valued functional space, (Xi,...,X,) an sample of size
n drawn from the underlying and unknown distribution P and (o1,...,04)
a set of rademacher variables. Let 7, = {f € F; T(f) < r}

EUI Xij

oif(x;)
i=1

Ro(Fr,x) = i [fu;)
eF,

] (Local Empirical Rad Av.)

E

o

Ro(F,) =E

X

sup |—
fer | N

” (Local Rademacher Av.)

Amir Dib?, (ENS Paris-Saclay) October 2021 17 /56



Background

Using Talgrand’s inequality it can be shown the following distribution free
uniform bound

Theorem

Let F be a functional family, (xi,...,xn) a i.i.d. sample of size n drawn
from P. With probability 1 — ¢

. 8log2 3log?
(P=Pn) f < 8RA(F) + E(F)| o + 2255, 3)

n

where Y2(F) := supscr E [f?] is a bound on the variance of the functions
in F.

v
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uniform bound

Theorem

Let F be a functional family, (x1,...,xn) a i.i.d. sample of size n drawn
from P. With probability 1 — ¢

. 8log2 3log?
(P=Pn) f < 8RA(F) + E(F)| o + 2255, 3)

n

where Y2(F) := supscr E [f?] is a bound on the variance of the functions
in F.

v

Can we drop the uniform bound for a variance dependend one, allowing for
use of localized complexities measures of F to obtain fast rates ?
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Background on rademacher complexity based bounds: the

local rademacher complexity

(Bartlett, Bousquet, and Mendelson, 2005) the following non uniform
bound based on LRA

Theorem

Assume that 1) is a sub-root function, i.e., ¥(r;8)/\/r is non-increasing
with respect to r € R, . Assume the Bernstein condition that

T(f) < BePf for all f € F. Then with probability at least 1 — ¢, for all
feFand K> 1,

100(K — 1)r*

1
P—P,)f< - Pf
( )= pPft B.

where r* is the "fixed point" solution of the equation r = Be1(r; 0).
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Main result: a localized bound for the pattern mining

problem

In the context of pattern mining, we can establish that (Cousins* and Dib*,
2021)

Proposition (Monte-Carlo Localization Bounds)

Consider the fixed point rV(K) function of the empricial rademacher
average. With probability at least 1 — 6 and for a function f € F we have

K ~_ . rU(K)
Pf > ind ———P,f, P,f— :
_Zi%mm{K-i-l T }

K
U
Pf<}|<nf max{LPf Pf+r (K)} .

K — K
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Experiment
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Figure: Experimental comparison of upper and lower bounds (y-axis) given
empirical frequencies (x-axis), of our method to existing work on real-world
datasets.
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Conclusion

> First use of localization in the context of pattern mining;
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Conclusion

> First use of localization in the context of pattern mining;

> We showed that using localized complexity allows to bound small
variance itemset more tightly than previous methods;

» We designed a geometrical approach allowing to compute the fixed
point the localized rademacher average in the context of pattern
mining;
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Conclusion

> First use of localization in the context of pattern mining;

> We showed that using localized complexity allows to bound small
variance itemset more tightly than previous methods;

» We designed a geometrical approach allowing to compute the fixed
point the localized rademacher average in the context of pattern
mining;

» The approach is tested empiracally and shows better convergence
behavior for small patterns than state of the art methods.
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Descriminative pattern mining problem as a stochastic

optimization problem

Recall that for a set X’ be the set of patternson E andarv. X:Q — X

distributed according to P, our goal is to compute for following quantity for
any pattern x € X

_ Py =0)
TPy =1)
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Descriminative pattern mining problem as a stochastic

optimization problem

Recall that for a set X’ be the set of patternson E andarv. X:Q — X
distributed according to P, our goal is to compute for following quantity for
any pattern x € X
_ P(x]Y =0)
"TPKxlY =1)

It can be shown (Dib et al., 2021) that this problem can be reformulated as
an optimization when you minimize an objective function of the type

L) =E[F(XY)], (4)

with A € RX and possibily very large K.
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Descriminative pattern mining problem as a stochastic

optimization problem

Recall that for a set X’ be the set of patternson E andarv. X:Q — X
distributed according to P, our goal is to compute for following quantity for
any pattern x € X
_ P(x]Y =0)
"TPKxY =1)

It can be shown (Dib et al., 2021) that this problem can be reformulated as
an optimization when you minimize an objective function of the type

L) =E[F(XY)], (4)

with A € RX and possibily very large K.

How can we speed up such inference 7
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Stochastic optimization procedure

Given a sample (X1, ..., Xy) of size N, typical MCVI consists of a gradient
descent at each step k

N
)\k+1 = )\k — Q) % Z V)\F (XiAk> .
i=1

=N
&Mmc
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Stochastic optimization procedure

Given a sample (X1, ..., Xy) of size N, typical MCVI consists of a gradient
descent at each step k

N
)\k+1 = )\k — Q) % Z V)\F (XiAk> .
i=1

SN
&Mmc

Gradient descent descent convergence speed crucially depends on the
following (Bottou, Curtis, and Nocedal, 2018) quantity

Elgl;, =trVg + [Egl7,.
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Stochastic optimization procedure

Is there ways to reduce the gradient variance 7

» Modify the gradient formula to reduce the variance (Miller et al.,
2017; Roeder, Wu, and Duvenaud, 2017);

» Control variate (Geffner and Domke, 2018);

» Alternative sampling (Pagés, 2015; Buchholz, Wenzel, and Mandt,
2018; Tran, Nott, and Kohn, 2017; Ruiz, Titsias, and Blei, 2016).
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Stochastic optimization procedure

Is there ways to reduce the gradient variance 7

» Modify the gradient formula to reduce the variance (Miller et al.,
2017; Roeder, Wu, and Duvenaud, 2017);

» Control variate (Geffner and Domke, 2018);

» Alternative sampling (Pagés, 2015; Buchholz, Wenzel, and Mandt,
2018; Tran, Nott, and Kohn, 2017; Ruiz, Titsias, and Blei, 2016).

What if we want variance-free gradient ?

Amir Dib?, (ENS Paris-Saclay) October 2021 25 /56



The optimal quantizer

> Let X : (Q,F) — (RY B(RY)) be a r.v. with finite p moments

Amir Dib?, (ENS Paris-Saclay) October 2021 26 /56



The optimal quantizer

> Let X : (Q,F) — (RY B(RY)) be a r.v. with finite p moments

> Goal: we want to find the best r.v. X with finite support [ C R to
replace X. Let g : RY — T be the function s.t. g(X) = X.
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> Let X : (Q,F) — (RY B(RY)) be a r.v. with finite p moments

> Goal: we want to find the best r.v. X with finite support [ C R to
replace X. Let g : RY — T be the function s.t. g(X) = X.

» Example: take the following samples. |[| =17
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The optimal quantizer

> Let X : (Q,F) — (RY B(RY)) be a r.v. with finite p moments

> Goal: we want to find the best r.v. X with finite support rcR9to
replace X. Let g : RY — I be the function s.t. q(X) = X.

> Example: take the following samples. What would be the optimal
choice for || =17

X2

X1
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The optimal quantizer

> Let X : (Q,F) — (RY B(RY)) be a r.v. with finite p moments
> Goal: we want to find the best r.v. X with finite support rcR9to
replace X. Let g : RY — I be the function s.t. q(X) = X.

> Example: take the following samples. What would be the optimal
choice for || =37

X2

X1
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The optimal quantizer

What is the best g function to minize the pointwise distance ?

Amir Dib?, (ENS Paris-Saclay) October 2021 27 /56



The optimal quantizer

What is the best g function to minize the pointwise distance ?

» Consider the voronoi cells associated with I' = (x1, ..., xn) such that

V(x,T) = {z ERY: |z — x| = miP |z —x|}.
x€
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The optimal quantizer

What is the best g function to minize the pointwise distance ?

» Consider the voronoi cells associated with I' = (x1, ..., xn) such that
V(x,T) = {z €RY: |z - x;| = min|z — x|}
xel

> Additionaly, take the closest projection onto the Voronoi cells defined
by
Xr =N X (5)
N

= in]lXEV(I',X;)- (6)

i=1
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The optimal quantizer

What is the best g function to minize the pointwise distance ?

» Consider the voronoi cells associated with I' = (x1, ..., xn) such that
V(x,T) = {z €RY: |z - x;| = min|z — x|}
xelr
> Additionaly, take the closest projection onto the Voronoi cells defined
by

Xr =N X (5)
N

= in]lXEV(I',X;)- (6)

i=1
» Then we have that

IX — Xr| = min|X — x|.
xelr

Amir Dib?, (ENS Paris-Saclay) October 2021 27 /56



The optimal quantizer: illustration
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The optimal quantizer: illustration
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The distortion function

Definition (Optimal Quantizer)

Let X: ((Q2,F)) — (E,B(E)) be a random variable in L, (Q, A,P) with
distribution 1 and consider a finite subset ' C E of size n. The
L, (2, A,P) distortion function D, of ju at level n is defined by

Dpu: EN — R,

. , 7
[ — E[minger|| X — x||?] (7)
and the quantization error function by
1
epu = Dpp- (8)

The minimizer of e, () is called a L, (2, A, P) optimal quantizer of 11 at
level n.
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The optimal quantizer: normal standard distribution

Monte Carlo Randomized Quasi Monte Carlo

Optimal Quantization

Figure: Monte Carlo (left), Randomized Monte Carlo (center) and Optimal
Quantization with the associated Voronoi Cells (right), for a sampling size
N = 200 of the bivariate normal distribution N (0, k)
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The optimal quantizer: the cubature formula

The key property of the optimal quantizer lays in the simplicity of his
cubature formula (Pages, 2018).

Let XN be a quantizer over [y = (x1,...,xn) the optimal quantizer.For
every measurable function F(X) € L,(Q, A, P)

E[F(XM)] = ﬁ:w;F(x,-N), 9)

with w; = ]P’(?r = X,')
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The optimal quantizer: the cubature formula

The key property of the optimal quantizer lays in the simplicity of his
cubature formula (Pages, 2018).

Let XN be a quantizer over [y = (x1,...,xn) the optimal quantizer.For
every measurable function F(X) € L,(Q, A, P)

E[F(XM)] = ﬁ:w;F(x,-N), (9)

with w; = ]P’(?r = X,')

This formula allows the use of E[F(X")] in place of E[F(X?)].
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Quantized optimization procedure

The quantized optimization procedure considers the optimal quantization
instead of the traditional MC. Precisely, Taking the optimal quantizer at
level N, X"nA  results in the following gradient descent scheme

N
)\k—f—l = A — iV Zw,k/‘_ <XirN’>\k> s (10)
i=1

i

with wf‘ =P <Xrlkv7>‘k = xk>.
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Quantized variational inference: the bayesian model

Given data y, a model p(y, z) with latent variable z, we want to
approximate the posterior distribution p(z|y).

Take a a variational distribution gy that approximates p(.|y), the following
decomposition can be obtained (Saul, Jaakkola, and Jordan, 1996)

10 p(y) = [log (Z( ))} KL (a@lp(el) . ()

-~

KL-divergence

ELBO £())
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Quantized variational inference: the bayesian model

Given data y, a model p(y, z) with latent variable z, we want to
approximate the posterior distribution p(z|y).

Take a a variational distribution gy that approximates p(.|y), the following
decomposition can be obtained (Saul, Jaakkola, and Jordan, 1996)

p(z,y)
| = E |l KL . 11
ogp(y) ZNqA[og qA(Z)}L (ax(2)lp(z]y)) (11)
KL-divergence
ELBO L())

Using the reparametrization trick (Kingma, Salimans, and Welling, 2015)
with noise parameter X ~ g and denoting X* = hy(X), the inference
problem can be rewritten as finding \* such as

A" € argmax E, {f(X/\)} . (12)
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Some theoretical guarantee: the Elbo quantization error

For ELBO maximization problem it can be shown that bias on the objective
function is controlled by the quantization error (Dib, 2020)

Proposition

Let \* = min L()) and A\j = min EgQ()\), then
AER

AERK

L) — LBy < C [2||XA* X

>+ HX)\; _Xr,)\2”2i| )
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Results: Poisson general model

Frisk(a = 5e-02)

Forest Fires(a = 4e-02)

Metro(a = 5e-03)

~10%

ELBO

-10*

—108

-107

—~10%2

10'%

1014}

1013

1012

101

100

QMcvI

101
1018
10174

106

1015

10144

10134

5‘0 160 1%0
time(s)

5‘0 160
time(s)

21)0 460 560
time(s)

Figure: ELBO (first row, log scale) and expect gradient norm (second row, log
scale) during the optimization procedure for various models: Poisson Generalized
Linear Model (left), Bayesian Linear Regression (center) and-Bayesian Neural
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Conclusion

Advantages

» Variance free Gradient estimator allowing for swift slides ;

» Optimal Quantization is preserved through linear transformation
(scaling and shifting) for large class of g). Hence, to optimization need
not to recompute the OQ at each steps!

» Implementation is (rather) simple with reparametrize gradient in the
use case of variational inference.
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Conclusion

Advantages

» Variance free Gradient estimator allowing for swift slides ;

» Optimal Quantization is preserved through linear transformation
(scaling and shifting) for large class of g). Hence, to optimization need
not to recompute the OQ at each steps!

» Implementation is (rather) simple with reparametrize gradient in the
use case of variational inference.

Limitations

» Doesn't apply to any type of prob model;
» Reducing bias is challenging (can lead to computationnal instability).
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A computational pipeline for the railway french fleet

Summarize of the work

» Construction of an industrial machine learning pipeline on the
real-world usecase of predictive maintenance for the french train fleet;

» Designed a two-sample based pipeline pruning to reduce drasticaly the
computational requirements needed to optimize on the set of
hyperparameters of the pipeline;

» Introduced a model that allow both taking into account expert
knowledge and output easily interpretable results based on patterns.
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Bayesian method for discriminative pattern mining

Part of this work has been published in 29th IEEE European Signal
Processing Conference (EUSIPCO) (Dib et al., 2021).
Summarize of the contribution
» New parametric approach for the discriminative pattern mining problem
that allow for expert knowledge through priors;
» Design of new algorithm to enrich any classifier with discriminative

patterns and showed score improvement over traditional methods on
real-world use cases.

Future work and perspectives

» Improve the model by using a non parametric approach for the bernoulli
mixture model using bread stick approach to replace the choice of K;
» Find new discriminative score that can be better suited.

Reproductibility. The results and figures are be fully reproductible and
accessible on public repository.
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https://github.com/amirdib/bpfd

Localized pattern mining

This work corresponds to the preprint (Cousins* and Dib*, 2021)*
to be submitted.
Summarize of the contribution
» First use of localized complexity for the pattern mining problem;
» Designed a double optimization scheme to compute the bound based on
empirical quantities;
Future work and perspectives
> Requires to use the set of closed itemsets above a certain treshold;
» Apply to more challeging problem such as DNA sequence classification or
graph mining.
Reproductibility. The results and figures are be fully reproductible and
accessible on public repository.

equal contributions.
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https://github.com/amirdib/bpfd

Optimal Quantization

Part of this work has been published in Advances in Neural
Information Processing Systems 33 Proceedings (NeurlPS 2020)
(Dib, 2020).
Summarize of the contribution
» A new sampling method for the general stochastic optimization problem
that allow for variance free optimization;
» Proposed a new algorithm for the VI problem and showed that it can be
used at comparable computational cost than MC based methods;
» Showed on real-world and challenging experiments that qvi outperforms
most advanced approaches towards variance reduction;
Future work and perspectives
» Design new ways to reduce the bias;
> Apply to other frameworks such as RL (Mohamed et al., 2020);

» Use the semi-discrete optimal transport approach to contruct the optimal
quantizer trough the Sliced Wasserstein distance;

Reproductibility. The results and figures are be fully reproductible and
accessible on public repository.
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https://github.com/amirdib/quantized-variational-inference

Publications and preprint

| 2

>

Long life to the train !

Amir Dib. “Quantized Variational Inference”. In: Advances in Neural
Information Processing Systems 33 (2020)

Amir Dib et al. "Bayesian Feature Discovery for Predictive
Maintenance”. In: 2021 29th European Signal Processing Conference
(EUSIPCO). IEEE, Mar. 2021

Cyrus Cousins® and Amir Dib*. “Fast Convergence Rates for
Low-Frequency Pattern Mining with Localization”. In: To Be
Submitted. 2021

Marie Garin et al. "Epidemic Models for COVID-19 during the First
Wave from February to May 2020: A Methodological Review". In:
arXiv:2109.01450 [q-bio, stat] (Sept. 2021)

Personal page: https://www.amirdib.com/
Github: https://github.com/amirdib
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From reactive to predictive maintenance

What are the strategies towards data-based maintenance ?
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From reactive to predictive maintenance

Reactive Maintenance

. . 'Degradation
Maintenance is performed when &

equipment has failed.

Time
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From reactive to predictive maintenance

Reactive Maintenance

Degradation

Maintenance is performed when
equipment has failed.

Zpreventive
t

Preventive Maintenance

Maintenance is performed regularly
on equipment to reduce probability of
failure

Vi=1
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From reactive to predictive maintenance

Reactive Maintenance

Degradation

Maintenance is performed when
equipment has failed.

Zpreventive
t

Preventive Maintenance

Maintenance is performed regularly
on equipment to reduce probability of
failure

Predictive Maintenance z
Maintenance is performed before
equipment failure using predictive
insights.
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The stochastic optimisation framework

Let (2, A, P) be the probability space, X* : (2, A,P) — (E,|-|g) a
random variable parameterized by A € RX.

For X* € Lid(Q,A, IP), we investigate the general Stochastic Optimization
problem Find A* such that

f(A) =E [F(X,A)]
= [ Fx M)

is minimized.
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The stochastic optimisation framework

steps; simulation (yellow) and optimization (green). The first step produces
The simulation phase produces a simulation of the stochastic system or

interaction withthe environment, as well as unbiased estimators of the
gradient (adapted from Mohamed et al., 2020).

Input parameter

System output
A F(X,A)
Stochastic gradient
VF(X,A)
( OPTIMISATION STEP 11
Ak+l L J

Figure: A typical stochastic optimization process composed of two
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Quantized variational inference: Bayes model definition

> Take data y and latent variables z,

» Choose a model p(y, z) represents our view of the studied
phenomenon through the choice of p(y|z) and p(z).

The goal of the Bayesian statistician is to find the best latent variable that
fits the data, hence the likelihood p(z|y). These quantities are linked by
the bayes formula which gives that

p(z)p(y|z)
p(y)

where p(y) is the marginal distribution or normalizing factor, which is a
constant.

p(zly) = : (13)
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Background: the voronoi diagram

Figure: Voronoi diagram for a finite subset I C R? with size n =5 for the ¢; (R?)
norm (Manhattan distance, left), /> (R?) norm (Euclidean distance, center) and
ls (R?) norm (Chebyshev distance, right). Each point x of R? is colored by it's
associated Voronoi cell. Notably, the Voronoi cells are star-shaped for all
considered distances (see Proposition 77), are convex polytopes in the euclidian
case and the separating sets are hyperplanes of R?.
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The optimal transport approach

Let (E,||.||) be a vector space equiped with the norm .||, u € M (E) a
probability measure with p-th finite moment and n € N the quantization
level. Denoting M (n) the space of probability measure with support at
most n, the optimal quantizer 0, of i is defined by

Dp = argmin Wy(u, v). (14)
veM(K)
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Main result: a localized bound for the pattern mining

problem

Definition

Let F be the functional family and £, the empirical star localized class
(?7). For Rademacher trial count m, sample size n, and any ¢ € [0, 1],
define the following

R . o [2In% ~[2In%
nm(r) = 2R, (Frox,o) 4200 (22 ) +rd (8] (15)
? nmr nr

afint . N
with 7 =3r 4 5r¢ (gi) and consider the fixed point 7} such that

rr = 1/3,,,,7, (7). For all K > 0, we set rY(K) to be the fixed point w.r.t. r
of the following equation

(16)

rP,’,‘—i—[Q rf;;—i—r]é —n_90 )=
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Local rademacher complexity: an intuitive example

> X ~N(0,1) > U(x,y) = |y — x|
> Y ~sign(a+ X +¢) > F = {sign(x + a);a € R}
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Local rademacher complexity: an intuitive example

> X~N(0,1) > Uxy) =y — x|
> Y ~sign(a+ X +¢) > F = {sign(x + a);a € R}

Image

—— Empirical average Pt
Global Rademacher bound
Local Rademacher bound
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The discriminative mining problem

» Let £ = (ey,...,eq) the base dictionary of events and £ = P(E) the
collection of all 29 possible patterns on E.
> A database of pattern from a random process valued in £ is composed

of ordered set of event from E and an associated label, such that
D = {(xi, l;)_, } of elements of £ x {0,1}

Sequence | Label || Events
Tl 1 {el, e2}
T 0 {e1, e, €1}
T3 1 {e1,e2,€3,€4}
T4 0 {61, 63}
Ts 0 || {e2,e3,€4}

» Question: For any pattern in x € P(E), what is the
statistical difference of frequency in each class 7
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The discriminative pattern mining problem

Dy D,

To [ To| T | Ta | Ts | Te | Tz | Te | To | Tio [ Tas [ Taz | Tus | Taa [ Tas | Tae [ Taz | Tus [ Tao | Tao

Figure: An example data set of events D = Do UD;. Row corresponds to items in
E =(e1,...,e) and columns to n = 20 samples. A blue colored area indicates
that the item is present in the sample column considered. In this data set, the
pattern x = {e7, eg} in £ seems to be nondiscriminative since so(x) = s;(x). On
the contrary, the pattern z = {es, e4, €5} appears to be specific to the positive
class I = 1.
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The model

Let X = (xy,...,X,) be an i.i.d.sample and suppose the underlying model
is a bmm with K components. For k € {1,..., K}, the k-ith sampling
distribution pk(x;|0k) depends has parameter 6, = (ij)fl:y Denoting Ak
the probability of sampling from the k-th component with Z,’f:l Ak =1,
the global sampling distribution writes

K
pxil©, ) = Aiepi(xil6k),
h—1

where © = (0x)K_; and X = (A\()KL)).
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The model

Knowing the mixture component parameter A, the component indicator
w; = (W1, ..., wik) for the sample i is thus distributed as Multin(X).
Finally, the joint distribution is derived as

p(X, WIB,A) = p(W[A)p(X|W, ©)

n

K
Z/\ Hpk X,|9k) ik,

k=1 i=1
Ala ~ Dirichlet (o) ,
w;|A ~ Multin(X),

0kj|B77 ~ Beta(ﬂ’7)7
xij|0kj ~ Bernoulli(fy;).
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The BFP algorithm

BFP algorithm consists mainly of three steps:

» Given D = Dy U D, fit the bernoulli mixture model on each subset to
find the set of optimal parameter ['; = (©;, A;, K) associated with
label i.

» For a pattern x € £ compute the ratio

'(x) = p(M: | x)
p(Mo | x)
_pM1)  p(x[T1)

~ p(Mo) "~ p(x|To)

» The best discriminative pattern are then appended as a variable in the
feature space on which any classifier can be trained.
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Experiments

Table: Test Accuracy, Recall and AUC 10x cross-validated for bpfd, pf and bc
classifiers (with grid-search hyperparameter tuning) for benchmark datasets.

h

‘ X Gradient Boosting Random Forest | Light Gradient-Boosting Machine

BC | PF |bpfd| BC | PF | bpfd

Categorical Boosting Linear
BC | PF | bpfd | BC | PF |

k-Nearest Neig

bpfd ‘

BC | PF | bpfd BC | PF | bpfd
ijenn1
AUC | 0728 0760 0.927 | 0726 0767 0.913 | 0.732  0.769 0.926 0727 0768 0.927 | 0.714 0732 0.899 | 0.614 0643 0.841
Accuracy | 0.906  0.907 0.929 | 0.906 0.907 0.928 | 0.906  0.907 0.929 0906 0907 0.93 | 0905 0905 0.918 | 0.89 0897 0.922
Recall |0.0398 0.0465 0.403 | 0.0411 0.0479 0.416 | 0.0238 0.0372 0.401 0.0413 00474 0407 | 0 00002 0.245 | 0.106 0.105 0.419
F1 | 0.0742 00862 0.519 | 0.0762 0.0885 0.523 | 0.0455 0.0702 0.516 00765 00877 0523 | 0 00003 0.362 | 0.154 016 0.505
cod-rna
AUC | 0776 0496 0.815| 0.776 0496 0.815| 0.776  0.496 0.815 0776 0496 0.815| 0765 0495 0.813 | 0706 05 0.764
Accuracy | 0.718  0.667 0.775 | 0.718  0.667 0.775 | 0.717  0.667 0.775 0718 0667 0.775 | 0713 0667 0.774 | 0.688 0591 0.739
Recall [ 0588 0 0383|0585 0 038 | 0592 0 0384 0588 0 038 |0512 0 0364 | 0483 0231 0.516
F1 0581 0 0532 058 0 0534|058 0 0532 0581 0 05320544 0 0518 | 0503 0263 0.568
a%
AUC | 089 0.896 088 | 0863 0869 0.875| 0894 09 0.903 0894 09 0.904 | 0893 0902 0.902 | 0.837 0.848 0.85
Accuracy | 0.841  0.844 0.846 | 0.825 0.826 0.829 | 0.844  0.846 0.849 0844 03847 0.843 | 0.841 0849 0847 | 0817 0.826 0.824
Recall | 0597 0.604 0.615 | 0.564 0.582 0578 | 0.606 0.613 0.626 0595 0606 0.611 | 0581 0.611 0.604 | 0.566 0.584 0.589
F1 0643 0649 0.658 | 0.607 0.616 0.619 | 0651 0656 0.666 0646 0654 0.66 | 0.637 0.659 0655 | 0597 0616 0.617
Doors
AUC | 0707 0691 0.736 | 0713 0707 0.753 | 0.706 0.697 0.739 0722 0715 0.749 | 0635 0629 0.637 | 0.557 0.574 0574
Accuracy | 0.643  0.629 0.679 | 0.655 0.645 0.686 | 0.647  0.637 0.681 0663 0657 0.684 | 0.6 0592 0597 | 0.546 0.551 0.551
Recall | 0.614 0608 0.642 | 0.504 0585 0.608 | 0595 0577 0.619 0569 056 0592 | 0.652 0.674 0648 | 0.545 0526 0.526
F1 0632 062 0.667 | 0632 0622 0.659 | 0.627 0.613 0.66 0627 0619 0.652 | 062 0623 0617 | 0.545 0539 0539
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