Bayesian feature discovery for predictive maintenance

Amir Dib[†], Charles Truong[†], Laurent Oudre[†], Mathilde Mougeot[†], Nicolas Vayatis[†], Heloïse Nonne[‡].

[†]Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, 91190, Gif-sur-Yvette, France [‡]ITNOVEM, SNCF, 93120, Saint-Denis, France

European Signal Processing Conference (EUSIPCO 2021).

Predictive maintenance

Figure: Temporal aggregation of log-events (e_{t_1},\ldots,e_{t_6}) over sliding windows (T_1,T_2,T_3) . In red, events that occur in the period T_a before y_{t_7} are considered anomalous and labeled I=1. The aggregation produces the itemsets $x_1=\{e_{t_1},e_{t_2},e_{t_3}\}, x_2=\{e_{t_2},e_{t_3}\}, x_3=\{e_{t_4},e_{t_5},e_{t_6}\}$ and the labels $I_1=0$, $I_2=0$ and $I_3=1$. The goal is to correctly predict the labels I_i from the itemsets x_i .

Background FIM

• Let E = ed the base dictionary of events and $\mathcal{E} = \mathcal{P}(E)$ the collection of all 2^d possible patterns on E.

Background FIM

- Let E = ed the base dictionary of events and $\mathcal{E} = \mathcal{P}(E)$ the collection of all 2^d possible patterns on E.
- A database of pattern from a random process valued in \mathcal{E} is composed of ordered set of event from E and an associated label, such that $\mathcal{D} = \{(x_i, l_i)_{i=1}^n\}$ of elements of $\mathcal{E} \times \{0, 1\}$

Sequence	Label	Events							
$\overline{T_1}$	1	$\{e_1, e_2\}$							
T_2	0	$\{e_1, e_2, e_4\}$							
T_3	1	$\{e_1, e_2, e_3, e_4\}$							
T_4	0	$\{e_1, e_3\}$							
T_5	0	$\{e_2, e_3, e_4\} \dots$							

Background FIM

- Let E = ed the base dictionary of events and $\mathcal{E} = \mathcal{P}(E)$ the collection of all 2^d possible patterns on E.
- A database of pattern from a random process valued in \mathcal{E} is composed of ordered set of event from E and an associated label, such that $\mathcal{D} = \{(x_i, l_i)_{i=1}^n\}$ of elements of $\mathcal{E} \times \{0, 1\}$

Sequence	Label	Events							
$\overline{T_1}$	1	$\{e_1, e_2\}$							
T_2	0	$\{e_1, e_2, e_4\}$							
T_3	1	$\{e_1, e_2, e_3, e_4\}$							
T_4	0	$\{e_1, e_3\}$							
T_5	0	$\{e_2, e_3, e_4\} \dots$							

• Question: For any pattern in $x \in \mathcal{P}(E)$, what is the statistical difference of frequency in each class.

Discriminative pattern

Figure: An example data set of events $\mathcal{D}=\mathcal{D}_0\cup\mathcal{D}_1$. Row corresponds to items in E=e9 and columns to n=20 samples. A blue colored area indicates that the item is present in the sample column considered. In this data set, the pattern $x=\{e_7,e_8\}$ in \mathcal{E} seems to be nondiscriminative since $s_0(x)=s_1(x)$. On the contrary, the pattern $z=\{e_3,e_4,e_5\}$ appears to be specific to the positive class l=1.

Discriminative pattern

- Discriminative pattern mining is an important problem with various application in many area;
- The fundamental difficult resides in the computation of frequency that requires to enumerate an exponential number of object. The problem is tipically NP-hard;
- All traditional approaches such as SPuManTE rely on a Mining step from a common frequent itemset miner on each class followed by a frequency based test [3].

BFP Algorithm

In the contrary, our approach is based on fitting a bayesian model on the process of sequences and a bayes ratio [2]. There is many advantages of this approach:

- Inference of the bayesian model can be performed by classifcal EM algorithm;
- No minimum user-treshold is required for the mining step [1];
- It is fast to evaluate any discriminative score since the frequency can be evaluated in closed-form;
- We can easily obtain confidence interval on the discriminative score by sampling from the joint distribution.

Pattern model

Let X = xn be an i.i.d.sample and suppose the underlying model is a BMM with K components. For $k \in \{1, \ldots, K\}$, the k-ith sampling distribution $p_k(x_i|\theta_k)$ depends has parameter $\theta_k = (\theta_{kj})_{j=1}^d$. Denoting λ_k the probability of sampling from the k-th component with $\sum_{k=1}^K \lambda_k = 1$, the global sampling distribution writes

$$\rho_{(\mathbf{x}_i|\Theta,\lambda)} = \sum_{h=1}^K \lambda_k \rho_k(\mathbf{x}_i|\theta_k), \qquad (1)$$

where $\Theta = (\theta_k)_{k=1}^K$ and $\lambda = (\lambda_k)_{k=1}^K$).

Pattern model

Knowing the mixture component parameter λ , the component indicator $\mathbf{w}_i = (w_{i1}, \dots, w_{iK})$ for the sample i is thus distributed as Multin(λ). Finally, the joint distribution is derived as

$$p(X, W|\Theta, \lambda) = p(W|\lambda)p(X|W, \Theta)$$
(2)

$$= \sum_{k=1}^{K} \lambda_k \prod_{i=1}^{n} \rho_k(\mathbf{x}_i | \boldsymbol{\theta}_k)^{w_{ik}}. \tag{3}$$

Pattern model

Knowing the mixture component parameter λ , the component indicator $\mathbf{w}_i = (w_{i1}, \dots, w_{iK})$ for the sample i is thus distributed as Multin(λ). Finally, the joint distribution is derived as

$$p(X, W|\Theta, \lambda) = p(W|\lambda)p(X|W, \Theta)$$
 (2)

$$= \sum_{k=1}^{K} \lambda_k \prod_{i=1}^{n} \rho_k(\mathbf{x}_i | \boldsymbol{\theta}_k)^{w_{ik}}. \tag{3}$$

$$oldsymbol{\lambda} | oldsymbol{lpha} \sim \mathsf{Dirichlet}\left(oldsymbol{lpha}
ight), \ oldsymbol{w_i} | oldsymbol{\lambda} \sim \mathsf{Multin}(oldsymbol{\lambda}), \ egin{align*} heta_{kj} | oldsymbol{eta}, oldsymbol{\gamma} \sim \mathsf{Beta}(oldsymbol{eta}, oldsymbol{\gamma}), \ heta_{ii} | heta_{ki} \sim \mathsf{Bernoulli}(oldsymbol{ heta}_{ki}). \end{cases}$$

The BFP algorithm

BFP algorithm consists mainly of three steps:

• Given $\mathcal{D} = \mathcal{D}_0 \cup \mathcal{D}_1$, fit the bernoulli mixture model on each subset to find the set of optimal parameter $\Gamma_i = (\Theta_i, \lambda_i, K)$ associated with label i.

The BFP algorithm

BFP algorithm consists mainly of three steps:

- Given $\mathcal{D} = \mathcal{D}_0 \cup \mathcal{D}_1$, fit the bernoulli mixture model on each subset to find the set of optimal parameter $\Gamma_i = (\Theta_i, \lambda_i, K)$ associated with label i.
- For a pattern $x \in \mathcal{E}$ compute the ratio

$$r(x) = \frac{p(\mathcal{M}_1 \mid x)}{p(\mathcal{M}_0 \mid x)} \tag{5}$$

$$= \frac{p(\mathcal{M}_1)}{p(\mathcal{M}_0)} \times \frac{p(x \mid \Gamma_1)}{p(x \mid \Gamma_0)}.$$
 (6)

The BFP algorithm

BFP algorithm consists mainly of three steps:

- Given $\mathcal{D} = \mathcal{D}_0 \cup \mathcal{D}_1$, fit the bernoulli mixture model on each subset to find the set of optimal parameter $\Gamma_i = (\Theta_i, \lambda_i, K)$ associated with label i.
- For a pattern $x \in \mathcal{E}$ compute the ratio

$$r(x) = \frac{p(\mathcal{M}_1 \mid x)}{p(\mathcal{M}_0 \mid x)} \tag{5}$$

$$= \frac{p(\mathcal{M}_1)}{p(\mathcal{M}_0)} \times \frac{p(x \mid \Gamma_1)}{p(x \mid \Gamma_0)}.$$
 (6)

• The best discriminative pattern are then appended as a variable in the feature space on which any classifier can be trained.

Experiments

Table: Test Accuracy, Recall and AUC $10\times$ cross-validated for bpfd, pf and bc classifiers (with grid-search hyperparameter tuning) for benchmark datasets.

	X Gradient Boosting		Random Forest		Light Gradient-Boosting Machine			Categorical Boosting			Linear Regression			k-Nearest Neighbors				
	BC	PF	bpfd	BC	PF	bpfd	BC	PF	bpfd	BC	PF	bpfd	BC	PF	bpfd	BC	PF	bpfd
ijcnn1	1																	
AUC	0.728	0.769	0.927	0.726	0.767	0.913	0.732	0.769	0.926	0.727	0.768	0.927	0.714	0.732	0.899	0.614	0.643	0.841
Accuracy	0.906	0.907	0.929	0.906	0.907	0.928	0.906	0.907	0.929	0.906	0.907	0.93	0.905	0.905	0.918	0.89	0.897	0.922
Recall	0.0398	0.0465	0.403	0.0411	0.0479	0.416	0.0238	0.0372	0.401	0.0413	0.0474	0.407	0	0.0002	0.245	0.106	0.105	0.419
F1	0.0742	0.0862	0.519	0.0762	0.0885	0.523	0.0455	0.0702	0.516	0.0765	0.0877	0.523	0	0.0003	0.362	0.154	0.16	0.505
cod-rna	l																	
AUC	0.776	0.496	0.815	0.776	0.496	0.815	0.776	0.496	0.815	0.776	0.496	0.815	0.765	0.495	0.813	0.706	0.5	0.764
Accuracy	0.718	0.667	0.775	0.718	0.667	0.775	0.717	0.667	0.775	0.718	0.667	0.775	0.713	0.667	0.774	0.688	0.591	0.739
Recall	0.588	0	0.383	0.585	0	0.386	0.592	0	0.384	0.588	0	0.384	0.512	0	0.364	0.483	0.231	0.516
F1	0.581	0	0.532	0.58	0	0.534	0.583	0	0.532	0.581	0	0.532	0.544	0	0.518	0.503	0.263	0.568
a9a																		
AUC	0.89	0.896	0.88	0.863	0.869	0.875	0.894	0.9	0.903	0.894	0.9	0.904	0.893	0.902	0.902	0.837	0.848	0.85
Accuracy	0.841	0.844	0.846	0.825	0.826	0.829	0.844	0.846	0.849	0.844	0.847	0.848	0.841	0.849	0.847	0.817	0.826	0.824
Recall	0.597	0.604	0.615	0.564	0.582	0.578	0.606	0.613	0.626	0.595	0.606	0.611	0.581	0.611	0.604	0.566	0.584	0.589
F1	0.643	0.649	0.658	0.607	0.616	0.619	0.651	0.656	0.666	0.646	0.654	0.66	0.637	0.659	0.655	0.597	0.616	0.617
Doors																		
AUC	0.707	0.691	0.736	0.713	0.707	0.753	0.706	0.697	0.739	0.722	0.715	0.749	0.635	0.629	0.637	0.557	0.574	0.574
Accuracy	0.643	0.629	0.679	0.655	0.645	0.686	0.647	0.637	0.681	0.663	0.657	0.684	0.6	0.592	0.597	0.546	0.551	0.551
Recall	0.614	0.608	0.642	0.594	0.585	0.608	0.595	0.577	0.619	0.569	0.56	0.592	0.652	0.674	0.648	0.545	0.526	0.526
F1	0.632	0.62	0.667	0.632	0.622	0.659	0.627	0.613	0.66	0.627	0.619	0.652	0.62	0.623	0.617	0.545	0.539	0.539

Discussion

Advantages

- Approach is fast to infer and evaluate;
- Allow to easily obtain confidence bound;
- Can use expert-knowledge in the prior setting.

Possible improvement

- We could improve the model by using a non parametric approach for the bernoulli mixture model using bread stick approach to replace the choice of K;
- Even though efficient, the EM algorithm could be replace with variational inference approach in order to speed up the inference phase;
- Other discriminative score could be more suited given the use case at hand.

Bibliography

- [1] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. "Mining Association Rules between Sets of Items in Large Databases". In: In: Proceedings of the 1993 Acm Sigmod International Conference on Management of Data, Washington Dc (Usa. 1993, pp. 207–216.
- [2] Andrew Gelman et al. Bayesian Data Analysis, Third Edition. en. CRC Press, Nov. 2013.
- [3] Leonardo Pellegrina, Matteo Riondato, and Fabio Vandin. "SPuManTE: Significant Pattern Mining with Unconditional Testing". In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019, pp. 1528–1538.